Submitted
M. England, N. Feldl, I. Eisenman, Sea ice perturbations in aquaplanet simulations: Isolating the physical climate responses from model interventions, in review.
Y. Dong, L. Polvani, Y-T. Hwang, M. England, Stratospheric ozone depletion has contributed to the recent tropical La Niña-like warming pattern, in review.
2024
Lewis N., M. England, J. Screen, R. Geen, R. Mudhar, W. Seviour, and S. Thomson (2024), Assessing the Spurious Impacts of Ice-Constraining Methods on the Climate Response to Sea-Ice Loss using an Idealised Aquaplanet GCM, Journal of Climate, doi: 10.1175/JCLI-D-24-0153.1.
Wu, Y-T., Y-C. Liang, M. Previdi, L. Polvani, M. England, M. Sigmond and M-H. Lo (2024), Stronger Arctic amplification from anthropogenic aerosols than from greenhouse gases, npj Climate and Atmospheric Science, 7, 142, doi: 10.1038/s41612-024-00696-0
England, M., and N. Feldl (2024), Robust polar amplification in ice-free climates relies on ocean heat transport and cloud radiative effects, Journal of Climate, 37, 2179-2197, doi: 10.1175/JCLI-D-23-0151.1
2023
Bushuk, M., L. Polvani, and M. England (2023), Comparing the Impacts of Ozone-Depleting Substances and Carbon Dioxide on Arctic Sea Ice Loss, Environmental Research: Climate, 2, 041001, doi: 10.1088/2752-5295/aced61
England, M., and L. Polvani (2023), The Montreal Protocol is delaying the occurrence of the first ice-free Arctic summer, PNAS, 120, e2211432120, doi: 10.1073/pnas.2211432120
Sigmond, M., L. Polvani, J. Fyfe, C. Smith, J. Cole, and M. England, Large contribution of ozone-depleting substances to global and Arctic warming in the late 20th century, Geophysical Research Letters, 50, e2022GL100563, doi: 10.1029/2022GL100563
England, M., I. Eisenman and T. Wagner (2022), Spurious climate impacts in coupled sea ice loss simulations, Journal of Climate, 35, 3801–3811, doi: 10.1175/JCLI-D-21-0647.1
Wyburn-Powell, C., A. Jahn and M. England (2022), Modeled interannual variability of Arctic sea ice cover within observational uncertainty, Journal of Climate, 35, 3227–3242, doi: 10.1175/JCLI-D-21-0958.1
Santer, B. and 15 co-authors (including M. England) (2022), Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature, Journal of Climate, 35, 6075-6100, doi: 10.1175/JCLI-D-21-0766.1.
Liang, Y., L. Polvani, M. Previdi, K. Smith, M. England and G. Chiodo (2022), Stronger Arctic Amplification from ozone-depleting substances than from carbon dioxide, Environmental Research Letters, 17, 024010, doi: 10.1088/1748-9326/ac4a31
Hay, S., P. Kushner, R. Blackport, K. McCusker, T. Oudar, L. Sun, M. England, C. Deser, J. Screen and L. Polvani (2022), Separating the influences of low-latitude warming and sea ice loss on Northern Hemisphere climate change, Journal of Climate, 35, 2327-2349, doi: 10.1175/JCLI-D-21-0180.1
2022
2021
England, M., I. Eisenman, N. Lutsko and T. Wagner (2021), The recent emergence of Arctic Amplification, Geophysical Research Letters, 48, e2021GL094086, doi: 10.1029/2021GL094086
England, M. (2021), Are multi-decadal fluctuations in Arctic and Antarctic surface temperatures a forced response to anthropogenic emissions or part of internal climate variability?, Geophysical Research Letters, 48, e2020GL090631, doi: 10.1029/2020GL090631
2020
England, M., T. Wagner and I. Eisenman (2020), Modeling the breakup of tabular icebergs, Science Advances, 6, eabd1273, doi: 10.1126/sciadv.abd1273
Chemke, R., M. Previdi, M. England and L. Polvani (2020), Distinguishing the impacts of ozone and ozone depleting substances on the recent increase in Antarctic surface mass balance, The Cryosphere, 14, 4135-4144, doi: 10.5194/tc-14-4135-2020
England, M., L. Polvani and L. Sun (2020), Robust Arctic warming caused by Antarctic sea ice loss, Environmental Research Letters, 15, 104005, doi: 10.1088/1748-9326/abaada
England, M., L. Polvani, L. Sun and C. Deser (2020), Tropical climate responses to projected Arctic and Antarctic sea-ice loss, Nature Geoscience, 13, 275-281, doi: 10.1038/s41561-020-0546-9
Polvani, L., M. Previdi, M. England, G. Chiodo and K. Smith (2020), Substantial twentieth-century Arctic warming caused by ozone depleting substances, Nature Climate Change, 10, 130-133, doi: 10.1038/s41558-019-0677-4
Bracegirdle, T. and 21 co-authors (including M. England) (2019), Back to the Future: Using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate, Geophysics, 9, 255, doi: 10.3390/geosciences9060255
England, M., A. Jahn, and L. Polvani (2019), Non-uniform contribution of internal variability to recent Arctic sea ice loss, Journal of Climate, 32, 4039-4053, doi: 10.1175/JCLI-D-18-0864.1
2019
Yettella, V., and M. England (2018), The role of internal variability in 21st century projections of the seasonal cycle of Northern Hemisphere surface temperature, Journal of Geophysical Research, 123, 13,149-13,167, doi: 10.1029/2018JD029066
England, M., L. Polvani, and L. Sun (2018), Contrasting the Antarctic and Arctic atmospheric response to projected sea ice loss in the late 21st Century, Journal of Climate, 31, 6353-6370, doi: 10.1175/JCLI-D-17-0666.1
See commentary piece on this article: Peings, Y. (2018), The atmospheric response to sea-ice loss, Nature Climate Change, 8, 664-665, doi: 10.1038/s41558-018-0243-5
2018
2016
England, M., L. Polvani, K. Smith, M. Holland, and L. Landrum (2016) Robust response of the Amundsen Sea Low to stratospheric ozone depletion, Geophysical Research Letters, 43, 8207–8213, doi: 10.1002/2016GL070055
England, M., T. Shaw, and L. Polvani (2016), Troposphere-stratosphere dynamical coupling in the Southern high latitudes and its linkage to the Amundsen Sea, Journal of Geophysical Research, 121, 3776–3789, doi: 10.1002/2015JD024254