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ABSTRACT: Internal variability is the dominant cause of projection uncertainty of Arctic sea ice in the short and me-
dium term. However, it is difficult to determine the realism of simulated internal variability in climate models, as observa-
tions only provide one possible realization while climate models can provide numerous different realizations. To enable a
robust assessment of simulated internal variability of Arctic sea ice, we use a resampling technique to build synthetic en-
sembles for both observations and climate models, focusing on interannual variability, which is the dominant time scale of
Arctic sea ice internal variability. We assess the realism of the interannual variability of Arctic sea ice cover as simulated
by six models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that provide large ensembles com-
pared to four observational datasets. We augment the standard definition of model and observational consistency by repre-
senting the full distribution of resamplings, analogous to the distribution of variability that could have randomly occurred.
We find that modeled interannual variability typically lies within observational uncertainty. The three models with the
smallest mean state biases are the only ones consistent in the pan-Arctic for all months, but no model is consistent for all
regions and seasons. Hence, choosing the right model for a given task as well as using internal variability as an additional
metric to assess sea ice simulations is important. The fact that CMIP5 large ensembles broadly simulate interannual vari-
ability consistent within observational uncertainty gives confidence in the internal projection uncertainty for Arctic sea ice
based on these models.

SIGNIFICANCE STATEMENT: The purpose of this study is to evaluate the historical simulated internal variability
of Arctic sea ice in climate models. Determining model realism is important to have confidence in the projected sea ice
evolution from these models, but so far only mean state and trends are commonly assessed metrics. Here we assess in-
ternal variability with a focus on the interannual variability, which is the dominant time scale for internal variability.
We find that, in general, models agree well with observations, but as no model is within observational uncertainty for
all months and locations, choosing the right model for a given task is crucial. Further refinement of internal variability
realism assessments will require reduced observational uncertainty.
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1. Introduction

Arctic sea ice has declined precipitously since 1979, at a
faster rate than at any time over the last millennium (Brennan
and Hakim 2022), with less than half the summer area and
one-quarter the summer volume remaining (Schweiger et al.
2011; Notz and Stroeve 2018). This observed decline is due to
both anthropogenic climate change and internal variability,
which can act to amplify or dampen the trend from external
forcing alone (Kay et al. 2011; Notz and Marotzke 2012). The
relative contribution of internal variability to the observed
September sea ice area decline remains uncertain but has
been estimated at 43%–53% (Stroeve et al. 2007; Kay et al.
2011; Ding et al. 2019). Internal variability also influences

future sea ice projections, leading to large internal variability
uncertainty, especially for the next few decades (Kay et al.
2011; Jahn et al. 2016; Bonan et al. 2021). As internal variabil-
ity is such a large contributor to the observed and projected
changes in Arctic sea ice cover, but global climate models
(GCMs) differ in the magnitude of their simulated sea ice in-
ternal variability (Olonscheck and Notz 2017), it is imperative
that we understand how realistically models simulate internal
variability.

Internal variability of Arctic sea ice has been shown to be
spatially heterogeneous (England et al. 2019) and to act on
multiple time scales from annual to multidecadal (Zhang and
Wallace 2015; Ding et al. 2017, 2019; Brennan et al. 2020).
Over the historical period, internal variability has been the
dominant cause of sea ice decline in many regions, most nota-
bly parts of the Kara Sea in summer and the Barents Sea in
winter (Li et al. 2017; England et al. 2019; Dörr et al. 2021). Sea
ice loss in recent decades has been most rapid and expansive in
the summer, particularly in the shelf seas, which have transi-
tioned frommainly ice-covered to ice-free formore of the sum-
mer, facilitating high internal variability (Onarheim et al. 2018;
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Mioduszewski et al. 2019). These areas of rapid and unpredict-
able change coincide with the most impactful areas for a range
of stakeholders from shipping and oil interests to indigenous
peoples and biodiversity (Kovacs et al. 2011; Petrick et al.
2017; Christensen andNilsson 2017; Chen et al. 2020).

The established way to estimate internal variability in
GCMs is to use multiple realizations of single-model initial-
condition large ensembles (SMILEs) or long constant-forcing
model runs to assess the ensemble spread or standard devia-
tion (Olonscheck and Notz 2017; Lehner et al. 2020; Maher
et al. 2020). SMILEs have successfully been used to study inter-
nal variability in the context of polar temperatures (England
2021), precipitation trends (Dai and Bloecker 2019), and re-
gional trends (McKinnon and Deser 2018; Hu et al. 2019).
However, such analysis cannot be done on observations, due to
only one realization of reality and a limited length of the obser-
vational record. It is this single realization of reality over a rela-
tively short period of time that has previously prevented direct
assessment of internal variability of Arctic sea ice in models
compared to observations. Hence, previous sea ice model as-
sessments have been focused on the trends (e.g., Swart et al.
2015; Rosenblum and Eisenman 2017), sensitivity to warming
(e.g.,Winton 2011; Niederdrenk andNotz 2018), andmean state
(e.g., Davy and Outten 2020). Furthermore, even if we were
able to precisely disentangle internal variability from the forced
response in observations, comparisons withGCMs are still chal-
lenging because we do not know where the one realization seen
in the observations falls within the probability distribution ob-
tained from amodel ensemble (Notz 2015).

Here, we provide the first direct comparison of internal vari-
ability of Arctic sea ice from a suite of SMILEs from phase 5 of
theCoupledModel Intercomparison Project (CMIP5) with ob-
servations, by using a statistical technique to construct a
“synthetic ensemble” of Arctic sea ice variability, following
McKinnon et al. (2017). Synthetic ensembles have been used
for several climate variability questions such as for sea surface
temperature (Chan et al. 2020), climate extremes (Deser et al.
2020a), precipitation (McKinnon and Deser 2021), ocean chlo-
rophyll concentration (Elsworth et al. 2021), and Antarctic sea
ice trends (Chemke and Polvani 2020). Here we present the
first use of a synthetic ensemble for studyingArctic sea ice, spe-
cifically to assess the realism of internal variability on interan-
nual time scales. Using the synthetic ensemble method, we are
able to show that generally the simulated interannual variabil-
ity fits within the observational uncertainty derived from dif-
ferent datasets, but that there are considerable seasonal and
spatial differences, and that some models perform better than
others for a given task. We also show that interannual variabil-
ity makes up approximately three-quarters of the total Arctic
sea ice internal variability, and hence the majority of the sea
ice internal variability over the past 42 years.

2. Data sources

a. Observational data

We primarily use two observational datasets for sea ice con-
centration (SIC), the National Snow and Ice Data Center

(NSIDC) Climate Data Record (CDR) version 4 (Meier et al.
2021) and the Hadley Centre Sea Ice and Sea Surface Tempera-
ture dataset (HadISST1) (Rayner et al. 2003). To further test
the sensitivity of our results to the observational dataset used,
we also utilize datasets derived from the satellite algorithms
NASA Team (NT) (Cavalieri et al. 1984) and NASABootstrap
(BT) (Comiso 1986). Together, these datasets are a representa-
tive sample of interpretations of past sea ice conditions, with
both the mean state and variability differing between the data-
sets due to observational uncertainties (Comiso et al. 2017; Kern
et al. 2019). Sea ice area (SIA) was chosen over sea ice extent
(SIE) as the variability of SIA is more independent of satellite
algorithms and is intrinsically more precise and thus better for
comparing internal variability between models (Notz 2014). All
analysis is performed usingmonthly data for 1979–2020.Missing
data for NSIDC datasets, and discontinuities in the HadISST1
dataset, were filled using the same month’s data in a different
year, instead of interpolating to avoid unrealistic SIC values (see
Table S1 in the online supplemental material for the specific re-
placements used).

b. Model data

Six models from the Climate Variability and Predictabil-
ity Program (CLIVAR) Multi-Model Large Ensemble
Archive (Deser et al. 2020b) are utilized in this analysis, as
detailed in Table 1. EC-Earth was excluded from this analy-
sis due to no available SIC output. All models are CMIP5-
class and use historical and representative concentration
pathway (RCP) 8.5 forcing, the high-emissions CMIP5
scenario. The models from the Multi-Model Large Ensemble
Archive are diverse in their mean state and trends, spanning
nearly the full range of CMIP5 sea ice projections (see Fig. 1
in Bonan et al. 2021). In winter, model mean-state biases are
typically smaller in absolute and relative terms than summer
(see Table S2). The notable outliers in summer are Can-
ESM2, with the largest negative mean-state bias of 254% in
September, and CSIRO-Mk3.6, being an extreme positive
outlier for all seasons and with 183% in September.
Although GFDL CM3 is not as large an outlier in mean state
in September, its SIA loss over the period 1979–2020 is by far
the most rapid. The six models range in ensemble size be-
tween 20 and 100 (see Table 1). We present results for all
members of the SMILEs to assess each GCM’s ability to real-
istically simulate the observed interannual variability. We
also provide subsampled results, scaled to 20 members, the
size of the smallest large ensemble, for model intercompari-
son with our consistency metric. Subsampling is discussed in
more detail in section 3c.

3. Methods

a. Resampling technique

We estimate interannual variability in a single model member
or observational time series by assuming the forced response is
represented by an ordinary least squares regression linear trend.
This assumption is deemed appropriate for 1979–2020, but
may not be applicable for time periods extending further back
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(England et al. 2019; England 2021), and allows us to follow the
methodology from McKinnon et al. (2017). Anomalies from
this linear trend are therefore considered largely due to interan-
nual variability alone. Typically the ensemble mean is a more
accurate measure of the forced response, but (as discussed in
sections 3d and 4c) detrending using the individual member
produces similar results and is chosen here for reasons detailed
in section 3d.

By using this technique we can calculate a consistent met-
ric of interannual variability to directly compare model
members and observations. We consider all months in the
pan-Arctic and present spatial results for the minimum and
maximum SIA months September and March respectively.
We resample the anomalies from the linear trend 10 000
times for SIA and 1000 times for each SIC grid box, with re-
placement, and use a 2-yr bootstrap block size. This can be
considered analogous to shuffling independent anomalies
to produce a range of alternative scenarios that would have
been equally likely to occur, allowing us to calculate metrics
of interannual variability for a representative sample of all
possible scenarios (see Fig. 1). As suggested by McKinnon
et al. (2017) and McKinnon and Deser (2018), we retain
spatial coherence by resampling in the time dimension for
all grid boxes at once. A total of 10 000 resamplings in the
pan-Arctic were chosen for increased reliability of consis-
tency classifications, whereas spatially 1000 was determined
sufficient as each grid box has a lower impact on results if a
classification were to change from rerunning the experi-
ment. A 2-yr block size is chosen because normalized auto-
correlation frequently exceeds 0.4 for a lag of 1 year, and a
marked drop-off in autocorrelation between a lag of 1 and
2 years occurs in comparison with years 2 and 3 (not
shown), occurring both spatially and in the pan-Arctic time
series. Resampling with a 1- or 2-yr block size leads to
almost identical results (not shown).

We focus our analysis on the standard deviation of sea ice
state over the 42-yr period 1979–2020, not the trends, as we
want to assess the realism of the models’ simulated interan-
nual variability, rather than the realism of the simulated
trends [see Swart et al. (2015) for a discussion of simulated
trends compared to observations]. The standard deviation
with respect to time is computed either for the 10 000 pan-
Arctic SIA resampling or the 1000 SIC resamplings in each
grid cell. To represent the distribution of these resamplings or
ensemble members we use the standard deviation (s) and
mean (m). Here, s can be considered analogous to the range
of interannual variability that could have occurred, given the

underlying data; m is analogous to the typical interannual vari-
ability represented in the resamplings.

To directly compare interannual variability between models
and observations we define three measures of variability as
follows, where sLE is internal variability in SMILEs and both
smem and sobs are the interannual variability within a syn-
thetic ensemble:

• sLE and mLE}Standard deviation and mean of standard
deviations within a single large ensemble, without resam-
pling, an established measure of the full range of internal
variability.

• smem and mmem}Standard deviation and mean of the stan-
dard deviations of all resamplings of a single model mem-
ber. The resampling process for a given ensemble member
is equivalent to that of the observations in Fig. 1. The me-
dian member’s value across all members of the SMILE is
denoted smem and mmem.

• sobs and mobs}Standard deviations and mean of the stan-
dard deviation of all resamplings of the single realization
of the observational dataset. These metrics relate to Fig. 1
as the standard deviation and mean of the distribution in
Fig. 1e.

b. Consistency

To assess the realism of simulated internal variability, we
utilize a consistency metric to provide a binary classification
as to whether the modeled variability is within or outside the
range of observational uncertainty. For sea ice analysis in the
past, consistency has typically been defined by at least one
member of a large ensemble overlapping with observations
(e.g., Notz 2015; Swart et al. 2015; Jahn 2018). However, this
is a relatively low bar for models to reach. Other more elabo-
rate consistency methods have been applied for other aspects
of the climate system (e.g., Santer et al. 2008) and applied to
Arctic sea ice by Stroeve et al. (2012). However the methodol-
ogy of Santer et al. (2008) bases consistency assessments on
trends rather than the internal variability independent of the
trends, as is the goal here. Hence, we here use resampling and
define consistency by comparing distributions, as it allows us
to compare whether the resampled distributions overlap.
Comparing distributions is a more stringent decision about
consistency than comparing single values for each ensemble
member or observational dataset that would be available
without resampling. Further augmentation to this binary clas-
sification is achieved by comparing SMILEs with four diverse
observational datasets independently, adding the category of

TABLE 1. Models used in this analysis from the CLIVAR Multi-Model Large Ensemble Archive (Deser et al. 2020b).

Modeling center Model Members Years References

CCCma CanESM2 50 1950–2100 Kirchmeier-Young et al. (2017)
NCAR CESM1 40 1920–2100 Kay et al. (2015)
CSIRO Mk3.6 30 1850–2100 Jeffrey et al. (2013)
GFDL CM3 20 1920–2100 Sun et al. (2018)
GFDL ESM2M 30 1950–2100 Rodgers et al. (2015)
MPI ESM1 100 1850–2100 Maher et al. (2019)
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“consistent within observational uncertainty.” We only use
this three-category consistency classification rather than a sig-
nificance or probability value (e.g., from a Student’s t test), as
both the resampled average variability (mmem) and standard
deviation of variability (smem) are positively skewed across
members. Nonetheless, we find that a 95% confidence interval
is in fact similar to our consistency classification, but classifies
fewer instances of inconsistency in the pan-Arctic than our
method.

Applying this consistency metric to Arctic SIA, each SMILE
realization or observational dataset has a different value of in-
terannual variability for each of the 10000 resamplings. These
10000 resamplings from a single member or observational time
series are approximately normally distributed and as such can
be thought of as probability distribution functions (PDFs) (see
Fig. 2). The width of the PDFs show the distribution of the
10000 resamplings, indicating the range of possible interannual
variabilities (proportional to smem and sobs). The location on
the horizontal axis indicates the average interannual variability
(mmem and mobs). For models and observations to be considered
“consistent” in the following, we require their means (their po-
sition on the horizontal axis in Fig. 2) and their standard devia-
tions (height on the vertical axis) to overlap such that at least
one member is greater than the lowest observational dataset
and one member is lower than the highest observations for
each s and m metric independently. Average SIC differences
do not preclude a consistent classification as variability may be

equal between a SMILE and observational datasets but about
different means. However, due to the zero-bound nature of
SIC, if a mean state differs so much that SMILE members
have at least some sea ice where there is no sea ice in the obser-
vational datasets, we exclude those regions from the analysis
rather than classifying them as inconsistent. We do this as the
focus of our analysis is on assessing the realism of actual sea ice
variability, so we only compare regions where there is variabil-
ity in both models and observations.

c. Ensemble size

We have included SMILEs with ensemble members as low
as 20 in our analysis as the standard deviation between mem-
bers (sLE), representing the full range of internal variability, in-
creases only marginally beyond approximately 8–12 members,
compared to the full range of 20–100 members (see Fig. S2).
This leads us to consider SMILEs of at least 12 members to
generate enough diversity between realizations to capture most
aspects of internal variability. The selection of a minimum
number of members for SMILEs when assessing different time
periods or other aspects of the climate system may require con-
siderably more members (Milinski et al. 2020). With increasing
ensemble size, the values of the minimum and maximum smem

diverge, making it easier for a SMILE to overlap with observa-
tions (see Fig. S1). Our primary goal is to assess the individual
realism of SMILEs when compared with observations, using as
much information from each model as is available. Hence, we

FIG. 1. Resampling methodology, applied to the observed September SIA. (a) Observed sea ice area from CDR
(dots) with linear trend (gray dashed line). (b) Anomalies from the linear trend. (c),(d) Two randomly different re-
samplings of the anomalies in (b), color coded to match the year of anomaly. (e) Distribution of the standard devia-
tion with respect to time for all 10000 resamplings. The printed statistics use s for standard deviation. In (e) the red
vertical line represents the standard deviation of the original data, gray indicates the distribution of standard devia-
tions for the 10000 resamplings, and the black line indicates a normal distribution.
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FIG. 2. Distribution of pan-Arctic SIA standard deviations across members, resamplings, and observations. Proba-
bility distribution functions (PDFs) for detrended standard deviation of pan-Arctic SIA, for (a)–(f) March and (g)–(l)
September. PDFs are produced from the mean (m) and standard deviation (s) across the 10 000 resamplings. Each in-
dividual resampled member (smem) is plotted with a thin line colored according to the legend, the average resampled
member (smem) is colored similarly with a thick line, and the resampled observations (sobs) are in red for the four
datasets according to the legend. Percentiles noted on the figure are the single values of sobs or mobs for the observa-
tional datasets relative to the distribution of smem and mmem across members.
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present results without subsampling the members to a con-
sistent ensemble size. However, as others may be interested
in a direct comparison of the interannual variability in
CMIP5 SMILEs, we provide subsampled results in the on-
line supplemental material, where consistency is standard-
ized to 20 members, the size of the smallest SMILE, in the
pan-Arctic (Fig. S5) and spatially (Fig. S6).

d. Detrending

The ensemble mean of a SMILE is considered a good rep-
resentation of the “forced response” of the model to the
changing climate (Frankcombe et al. 2018). However, obser-
vations only have one realization, and hence the observed
forced trend must be computed from that single realization.
Hence, in our analysis we use the individual members’ trends
over the period 1979–2020 as representation of the forced re-
sponse, to enable the same methodology to be applied to ob-
servations and models, for direct comparisons. The SMILEs
provide the perfect place to test the impact of this method: we
find that linear detrending rather than removing the ensemble
mean results in only a marginal decrease in variability (8%
reduction for smem and 11% for sLE) yielding a very similar
ratio (see Fig. S11).

Applying linear detrending largely removes low-frequency
variability. We reached this conclusion as detrending ensem-
ble members and observations using a 2-yr fifth-order low-
pass Butterworth filter (Roberts and Roberts 1978), which ex-
plicitly removes low-frequency variability, obtaining almost
identical consistency results as with a simple linear trend (see
Fig. S7 in comparison to Fig. 8). This low-pass filter removes
variability on frequencies in excess of 2 years, the time period
beyond which autocorrelation in the sea ice is negligible.
Good agreement between the linear detrending and the low-
pass filtered data suggests that both anomaly calculation
methods effectively isolate interannual variability. The vari-
ability in our resampled anomalies of individual SMILE mem-
bers (smem) captures approximately three-quarters of internal
variability across SMILE realizations without resampling
(sLE), as discussed further in section 4c. This enables us to
conclude that our detrending and resampling analysis primar-
ily assesses interannual variability, and that this is the domi-
nant time scale of internal variability for Arctic sea ice for the
period 1979–2020.

In the spatial analysis we obtain a linear trend for each grid
cell, using the same method of detrending as we did for the
pan-Arctic. While we find some isolated incidences of grid
cells where the linear SIC trend exceeds 100% or is lower
than 0%, extremely small differences are found in consistency
if a different detrending method is used, such as a 2-yr low-
pass filter (see Fig. S7) or trends capped to physical bounds
(not shown). Hence, the detrending method does not affect
the conclusions drawn from the analysis.

e. Time periods

The time period considered is the observational period
1979–2020, focused on the seasonal extremes of March and
September for the spatial analysis; 1979–2020 is chosen for

observations due to high-quality spatial data from 1979 on-
ward, which is particularly important for assessing interannual
sea ice variability. We found that shifting the time period
used from the models to better match the observed mean sea
ice state yielded negligible differences spatially and minimally
affected pan-Arctic results for shifts of a few years to a de-
cade. When matching the observed mean state required ad-
justments of many decades, the changes in the results were
larger. However, in some instances a model did not have a
time period when the mean state matched the observed mean
state in the whole historical and future simulations. Further-
more, we want to assess the realism of the simulated interan-
nual variability as simulated, to complement previous model
assessments of trends and mean state that were done over the
same periods in models and observations (e.g., Swart et al.
2015; Notz and SIMIP Community 2020). Hence, although in-
ternal variability has been shown to be sensitive to mean state
(Goosse et al. 2009; Jahn et al. 2016; Olonscheck and Notz
2017; Massonnet et al. 2018), and some models have more lin-
ear SIA and SIC declines than others over 1979–2020, we find
that the choice of exact period analyzed did not materially im-
pact our results.

As the use of a 42-yr time period is out of necessity, this
raises the question of whether a 42-yr period is sufficient for
our analyses. To answer this question different time period
lengths were assessed within the models (see Fig. 3). Time
periods longer than approximately 20 years yield similar
smem/sobs ratios, which gives confidence in our results for this
metric being representative of a broad range of time periods.
Similarly, the ratio smem/sLE changes rapidly for short time
periods but becomes relatively stable for time periods of at
least a few decades. To confirm this, we conducted a similar
time period analysis for the period 1953–2020 using low-pass
filtered SIA. This more clearly indicates the stabilization of
the ratio smem to sLE, at approximately 75%, independent of
the length of the time period in excess of approximately
30 years (see Fig. S3). Spatially, when we compare the shorter
32-yr time periods 1979–2010 and 1989–2020 to the full time
period of 1979–2020, we find that there are small consistency
differences between the time periods for some regions, but
these differences are not substantial enough for our main con-
clusions to be altered (see Fig. S4).

4. Results

a. Resampled variability in models and observations

Resampling the observations and SMILE models, we find
that the variability of models is generally similar to observa-
tions, but with considerable seasonal and regional variability.
The variability in both models (smem) and observations (sobs)
shows distinct seasonality in the pan-Arctic, peaking in the au-
tumn with the exception of CSIRO-Mk3.6 [see Fig. 4 and
shown for average variability (m) in Fig. S8]. In spring we find
larger variation between different realizations of the same
model than between model averages. This highlights the sen-
sitivity of interannual variability to realization, and why we as-
sess realism based on consistency rather than comparison
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between the median SMILE member and observations (see
section 3b). The results of this consistency assessment are
discussed further in section 4b.

Observations have substantial uncertainties that impact the
value of observational interannual variability (sobs). Hence,
the choice of which dataset to use for comparison with models

can affect whether observations fall within the large ensemble
range, both for the pan-Arctic and spatially (see Figs. 4 and 6).
Furthermore, the uncertainties vary seasonally, with the larg-
est relative uncertainty of pan-Arctic observational variability
in the winter and spring (see Fig. 5). Hence, it is easier for
models to fall within the observational uncertainty in the

FIG. 3. Influence of the length of the time period on the standard deviation of pan-Arctic SIA. The standard devia-
tion with respect to time is shown for time periods between 6 years and the maximum length of a linear trend in SIA,
bootstrapped 1000 times. Thick lines show the median ensemble member; shading shows 61 standard deviation.
(a),(b) The ratio of standard deviation across resamplings (smem) to standard deviation across members (sLE) over a
subset of the time periods (a) 1965–2066 for March and (b) 1970–2040 for September. (c),(d) The ratio of standard de-
viation across resamplings (smem) to standard deviation across resampled observations (sobs) in the HadISST1 dataset
for the period 1979–2020 in (c) March and (d) September.

FIG. 4. Seasonality of resampled variability in ensemble members and observations for pan-Arctic sea ice area. The
distribution of standard deviations (smem) across ensemble members is shown for each model and month as a box-
and-whisker charts, where whiskers show the full range of ensemble members, boxes show the interquartile range,
and gray bars indicate the median member. Values of resampled variability in observations (sobs) are shown as hori-
zontal lines for each of the four datasets.
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winter and spring than in the summer and autumn. For most
months, we find the majority of the ensemble median variabil-
ity (smem; gray bars in Fig. 4) are similar or higher than obser-
vations (sobs; in red). However, as we do not know how
typical observations are, we cannot use these differences to di-
agnose model biases.

Spatially, there is considerable difference in the locations of
maximum variability between models and the observational
datasets in September (see Fig. 6). We find large-magnitude
differences throughout the ice-covered region between differ-
ent models and when comparing models with observations.
Despite these large differences in the ensemble medians be-
tween models, we find that the range between members for a
given model is considerably larger in most instances. Again
this draws attention to the difference of interannual variability
between realizations. In comparison to September, the loca-
tion and magnitude of highest variability in March is more
similar between different models, with the range between
members being very large for the ice edge region (see Fig. S9).
Observational uncertainty is also highly variable between re-
gions; for example, NT exhibits much higher variability in
the central Arctic in September than the other datasets (see
Fig. 6). When we combine both the spread of model simula-
tions across realizations and the spread of interpretations of
the observational record, we find broad agreement between
models and observations. This is true both in the pan-Arctic

and spatially in their representation of Arctic sea ice interan-
nual variability.

b. Consistency of models and observations

When utilizing the range of observational datasets for the
pan-Arctic, we find model consistency for a majority of the
time (57%) across models and months (see Fig. 7i). Models
consistent within observational uncertainty account for 33% of
months, far greater than the 10% of months identified as incon-
sistent. It is important to note that these proportions relate to
the specific six models we analyzed, which capture the full
spread of the CMIP5 sea ice simulations (Bonan et al. 2021).
Nonetheless, the common pattern is for GCMs to be predomi-
nantly consistent within observational uncertainty. By our defi-
nition of consistency, all models except CSIRO-Mk3.6 and
GFDL CM3 are consistent in September for all observational
datasets. In the spring, when observational uncertainty is larg-
est, we find that all models are consistent within observational
uncertainty and in April and May all models are consistent
with all observational datasets. When looking across all months
we find that only MPI ESM1 is unambiguously consistent with
all observational datasets and CESM1 and GFDL ESM2M are
consistent but not for all observational datasets. CanESM2,
CSIRO-Mk3.6, and GFDL CM3 (the models with the largest
mean-state bias) are the only models with inconsistent classifi-
cations beyond observational uncertainty. Our ability to more

FIG. 5. Resampled variability of pan-Arctic sea ice area for the four observational datasets, showing (a),(c) absolute
values and (b),(d) percentage uncertainty shown as calculated from the range of sobs divided by the mean of sobs.
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stringently assess realism by using the two metrics is demon-
strated by CanESM2 and GFDL CM3 being considered consis-
tent for all months for s, but when also considering m we find
that both models have two months with inconsistencies.

When considering consistency spatially, each grid cell can
be considered to have a distribution of PDFs similar to Fig. 2
and thus can be categorized in the same way. Consistency in s

and m is highly correlated but with some differences, indicat-
ing the benefit of using both metrics (areas of light blue and
light red in Fig. 8). As noted earlier, we focus on the seasonal
minimum and maximum sea ice area in September and
March, respectively, and present a consistency classification
only where both the model and observations exhibit nonzero
sea ice.

Similarly to the pan-Arctic, we find no areas where the s

and m metrics produce different signs of inconsistency. With
the exception of CSIRO-Mk3.6, the shelf and marginal seas

in September in all models are broadly consistent within ob-
servational uncertainty, with CESM1 and GFDL ESM2M
performing the best. CSIRO-Mk3.6 shows the largest incon-
sistencies in March with underestimation of variability in
the Barents Sea. All other models simulate consistent vari-
ability in the Barents Sea where atypically rapid SIC decline
has occurred (Li et al. 2017). Both regions of too high
variability and too low variability occur for MPI ESM1 in
September, yet this model is consistent for September in the
pan-Arctic, indicating these regions counteract each other
for SIA. For March the models are more dissimilar than in
September, with no regions of over- or underestimation of
interannual variability common to all models. Large por-
tions of the central Arctic Ocean have very little observed
and modeled variability in March, due to the 100% bound-
ing of SIC. This means that small absolute biases in the
modeled interannual variability can cause an inconsistent

FIG. 6. Resampled modeled and observed variability of September sea ice concentration. (top three rows) Standard deviation of resam-
plings for the six models (smem) for the maximum, median, and minimum member for each grid cell. (bottom) Standard deviation of re-
samplings for the four observational datasets (sobs). The color bar applies to all subplots on this figure. The same analysis for March is
shown in Fig. S9.

WY BURN - P OWEL L E T A L . 323515 OCTOBER 2022

Brought to you by UNIVERSITY OF CALIFORNIA Santa Cruz | Unauthenticated | Downloaded 11/03/22 12:42 AM UTC



Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(d) Maximum, obs

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(e) Maximum, obs

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
(f) Maximum obs and obs

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(a) Minimum, obs

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(b) Minimum, obs

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
(c) Minimum, obs and obs

C
a
n
E
S
M
2

C
E
S
M
1

C
S
IR
O
M
K
3
.6

G
FD
L
C
M
3

G
FD
L
E
S
M
2
M

M
PI
E
S
M
1

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(g) All, obs

C
a
n
E
S
M
2

C
E
S
M
1

C
S
IR
O
M
K
3
.6

G
FD
L
C
M
3

G
FD
L
E
S
M
2
M

M
PI
E
S
M
1

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(h) All, obs

C
a
n
E
S
M
2

C
E
S
M
1

C
S
IR
O
M
K
3
.6

G
FD
L
C
M
3

G
FD
L
E
S
M
2
M

M
PI
E
S
M
1

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

(i) All, obs and obs

All members too low
Too low in one metric

All members too high
Too high in one metric

Consistent
Consistent within
observational uncertainty

All members too low
Too low in one metric

All members too high
Too high in one metric

Consistent
Consistent within
observational uncertainty

All members too low
Too low in one metric

All members too high
Too high in one metric

Consistent
Consistent within
observational uncertainty

FIG. 7. Consistency between models and observations in pan-Arctic SIA. White indicates consistency between models and
all observational datasets, while reds and blues indicate inconsistency in at least one metric. Specifically, dark blue indicates
the model is inconsistent with observations, as all members are too low, while dark red indicates inconsistency due to all mem-
bers being too high. (c),(f),(i) Two metrics are combined. Here, light blue means one of the metrics classifies the model as
too low while the other metric is consistent, and light red indicates that the model is too high in one metric but consistent in
the other metric. There are no instances of too-high and too-low classifications for a given month by the different metrics.
(g)–(i) All observational products are combined. Here, black indicates disagreement in classification between the observa-
tional datasets, indicating consistency within observational uncertainty.
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classification (see Fig. S9). With our consistency classifica-
tion we conclude that more models have greater realism of
simulated interannual variability in September than in March.
However, even well-performing models in some regions in

September or March generally do a poorer job in the other
month, indicating that the skill of a certain model in simulat-
ing interannual variability is highly seasonally and regionally
dependent.

FIG. 8. Spatial consistency of interannual variability between large-ensemble members and observations. Members of the large ensem-
bles that have at least one member overlapping with the variability of resampled observed SIC are shown in white, indicating consistency.
Regions where the classification differs between the maximum and minimum observational datasets are shaded black, indicating consis-
tency within observational uncertainty. Areas without sea ice, either in the model or observations, are shaded beige. Areas shaded in red
and blue indicate inconsistency in at least one metric, using the same color scheme as Fig. 7.
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c. Internal variability captured by resampling versus
ensemble spread

Our best estimate of the full range of internal variability, on
high- and low-frequency time scales, is through SMILEs; here
we use the standard deviation between detrended members
(sLE) to represent this. As we consider the resampled standard
deviation of SMILE members and observations to be represen-
tative of interannual variability and not the full range of internal
variability, we would expect the ratio smem/sLE to be less than
one. For all seasons, when looking at pan-Arctic SIA, interan-
nual variability simulated by the median standard deviation
across resamplings (smem) is less than the internal variability
simulated by multiple realizations without resampling (sLE), an
annual average of 75.9% across models (Fig. 9). This ratio is ro-
bust irrespective of detrending method with an average of
74.4% and 82.4% when the ensemble mean and a 2-yr low-pass
filter, respectively, is used for detrending (see Fig. S11).

This ratio of three-quarters interannual variability and one-
quarter lower-frequency variability also holds for different
time period lengths, as discussed in section 3e, and is rela-
tively stable for a given 42-yr time period sometime between
1950–91 and 2050–91. Hence, we expect interannual variabil-
ity to remain the dominant portion of internal variability for
the near future. The general underestimation of the resam-
pled variability, compared with the benchmark of large en-
semble spread, is in agreement with previous uses of this
methodology on surface temperature, precipitation and sea
level pressure (McKinnon et al. 2017; McKinnon and Deser
2018). When considering the difference between sLE and
smem spatially, we find the largest underestimations along the
ice edge but in general the signal in the pan-Arctic is repli-
cated homogeneously across the Arctic (see Fig. S10).

5. Discussion

Sea ice poses unique challenges in assessing internal vari-
ability: a short time period of high-quality observations, physi-
cal bounds of 0%–100%, and changes in variability as mean
state changes. Despite this, we were able to apply the synthetic
ensemble method to Arctic sea ice as used in McKinnon et al.
(2017) and McKinnon and Deser (2018) for temperature, pre-
cipitation, and sea level pressure. Similarly to previous re-
search, we found that resampling leads to an underestimation
of the full range of internal variability captured by a large en-
semble, both in the pan-Arctic (where smem ≈ 0:76sLE; see
Fig. 9) and also locally across the Arctic Ocean (Fig. S10). This
agrees with the expectation that low-frequency variability is
not fully captured by the resampling (McKinnon and Deser
2018). Hence our analysis primarily assesses the interannual
component of internal variability. Interestingly, this propor-
tion of three-quarters of the internal variability being due to
interannual variability matches closely with the 75% contri-
bution from atmospheric temperature fluctuation to Arctic
sea ice variability found by Olonscheck et al. (2019) via a
“decoupling” methodology. Both of these independent anal-
yses hence suggest that Arctic sea ice interannual variability
is largely unpredictable.

Our analysis assumes that a given anomaly is equally likely
to have occurred in 1979 or 2020. This is a dependable as-
sumption, despite the fact that it has been shown that variabil-
ity increases as sea ice extent decreases (Goosse et al. 2009;
Jahn et al. 2016; Olonscheck and Notz 2017; Massonnet et al.
2018), as we showed that neither the length of the period con-
sidered (Fig. 3) nor the period itself (Fig. S12) substantially
change the results. However, as the Arctic approaches season-
ally ice-free conditions, an “equally likely” assumption will no

FIG. 9. Seasonality of the ratio of internal variability across SMILEs and interannual variability
of resampled members for pan-Arctic sea ice area. Lines show the ratio of the standard deviation
of the median resampled member to the standard deviation across members without resampling
(smem to sLE); shading shows the interquartile range of the ratios for all members.
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longer be a valid approach. For example, it would not be ap-
propriate to assume that a September SIA negative anomaly
of one million square kilometers (as occurred in 2007) would
be equally likely to occur when the mean state in September
is practically zero in most models.

All of the SMILEs, except CSIRO-Mk3.6, capture the sea-
sonal cycle of smem and mmem with highest values in the sum-
mer. However, the magnitude of observational uncertainty
also needs to be taken into account as it factors into how
stringent consistent classifications are. Observational uncer-
tainty is largest in the winter for the pan-Arctic (see Fig. 5),
and therefore it is easier for models to be consistent during
this part of the year. Spatially we find the largest differences
in variability between observational datasets in the central
Arctic during September (see Fig. 6). Nevertheless, we still
find that most models simulate too high variability in this
region in September, and it is only the extreme variability
of NT compared with the other observational datasets that
allows a “consistent within observational uncertainty” classifica-
tion for most models (see Fig. 8). Consensus regarding which
observational dataset is the most realistic for these areas would
be required before determining which models have the better
representation of variability in the high SIC regions.

As we have shown that almost all models can simulate consis-
tent members across seasons, we can say most of the SMILE
models are realistic in their simulation of historical interannual
variability. Realism of internal variability is a complementary
assessment to the analysis of mean state, sensitivity to warming,
and trends (Swart et al. 2015; Rosenblum and Eisenman 2017;
Winton 2011; Niederdrenk and Notz 2018; Davy and Outten
2020). Some of these metrics are interrelated but each provide
part of the picture for a full model assessment for Arctic sea ice.
We show that the CMIP5 models with inconsistent months or
large regions of inconsistency are those with the largest mean
state biases, but even these models are consistent for several
months of the year in the pan-Arctic and for most regions in
March and September. This suggests that avoiding mean state
biases is important for correctly simulating the evolution of the
Arctic sea ice cover [see Massonnet et al. (2018)], but models
can have moderately large mean-state biases and still simulate
realistic sea ice interannual variability. Furthermore, as we find
that most CMIP5 SMILE models agree with observations in
terms of their interannual variability for the pan-Arctic in Sep-
tember, the internal variability prediction uncertainty of an ice-
free Arctic of over two decades from climate models (Notz
2015; Jahn et al. 2016) is likely realistic. However, no SMILE
model performs well in all months and regions. But if one
wishes to only focus on one season or region, one can find a
CMIP5 SMILE model where the interannual variability is con-
sistent with observations. This is true even for hotspots of inter-
nal variability such as the Barents Sea in winter and the shelf
seas in summer (England et al. 2019; Bonan et al. 2021), show-
ing the robustness of the consistency classification.

6. Conclusions

In this study, we showed that simulated interannual vari-
ability of CMIP5 large ensemble models is typically within

observational uncertainty, by generating a synthetic ensem-
ble of Arctic sea ice variability and using a binary classifica-
tion of consistency that considers the full distribution of
resamplings to aid the assessment of model realism. This
analysis method considers approximately three-quarters of
Arctic sea ice internal variability, on the dominant interan-
nual time scale for the period 1979–2020. Sea ice variability is
another metric that augments the realism assessment of
GCMs in the context of Arctic sea ice beyond the typical
mean state and trend consistency and the assessment of sea
ice sensitivity (Swart et al. 2015; Rosenblum and Eisenman
2017; Winton 2011; Niederdrenk and Notz 2018; Davy and
Outten 2020).

We showed that all models are able to simulate the seasonal
cycle of interannual variability with peaks in the summer, ex-
cept CSIRO-Mk3.6, which has by far the largest mean state
biases (see Table S2), caused by aerosol issues (Uotila et al.
2013). We demonstrate that all modeled interannual variability
is within observational uncertainty, except for CanESM2 in
January and November, GFDL CM3 in August and November,
and CSIRO-Mk3.6 in August–October for the pan-Arctic. Ex-
cept for areas of low absolute variability in the central Arctic
Ocean, there are no inconsistencies that are common across all
six models we assessed. Spatially, we find the models underesti-
mate interannual variability for most regions in March, and in
September most models overestimate variability in the central
Arctic. The marginal seas, which have high absolute variability,
are generally realistically simulated, although our assessment is
limited to where both models and observations have sea ice.
No model simulated the spatial interannual variability in both
March and September without inconsistencies, but most models
simulated at least one of the two months realistically. CESM1
and GFDL ESM2M simulate September spatial variability very
well, with very few areas of inconsistency, including the highly
variable shelf seas. In March, MPI ESM1 performs best, with
only the Siberian coast displaying too-high variability.

In summary, in this first direct comparison of interannual
variability between observations and models, we have shown
that estimates of interannual variability from models are
largely consistent with observations. However, model skill
varies by month and region, highlighting that the best model
to use for a study varies based on the context. To be able to
assess the impact of the full range of internal variability, in-
cluding the low-frequency variability (McKinnon and Deser
2018), first requires an improved understanding of the drivers
of low-frequency variability on Arctic sea ice. Generally, the
fact that the simulated interannual variability of most CMIP5
large ensembles agrees quite well with historical observations,
especially in September, increases trust in the internal vari-
ability uncertainty of Arctic sea ice projections.
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